Lithium vs. TPPL Battery Overview. Is it a fair comparison?
As lithium-ion batteries continue to grow in popularity, lead-acid battery manufacturers are now offering thin plate pure lead batteries…
Today’s market for industrial batteries has grown dramatically through innovation and the adoption of new technologies, such as multiple types of new-generation lithium batteries, hydrogen fuel cells, and new variations of the older lead-acid batteries. It is increasingly hard to make the right choice, given the variety of equipment types, makes, and models designed for a specific application and a specific work environment and operation pace.
The OneCharge engineering team zeroed in on lithium LFP cells as the best choice for industrial lithium batteries powering material-handling equipment and off-highway EVs (Class I, II, and III electric lift trucks; tugs; personnel and burden carriers; sweepers; scrubbers; and aerial platforms). We use LFP lithium cells in OneCharge batteries, which
Cells are constructed of several elements, including the cathode, anode, electrolyte, and membrane. (To learn more, see the Lithium cell design page of this website.) The biggest impact on the specs of today’s commercially available batteries is made by the chemistry of their cathode materials. That is why battery cells are named after the chemical composition of the materials used in the cathode of a lithium cell.
There are multiple cathode materials to choose from within the Li-ion technology space. The best-known active component of the cathode is cobalt, widely used in batteries for electronics and EVs. Today, battery manufacturers using cobalt are facing serious supply-chain sustainability issues (like unethical mining practices, including the use of child labor). Cobalt is frequently substituted out with iron (LFP), nickel, manganese, and aluminum.
OneCharge batteries are based on LFP cells, the optimal choice for material-handling applications.
As stated above, LFP chemistry is the optimal choice for material handling equipment batteries, and here’s why.
Of all the various types of lithium-ion batteries, three cell chemistry types emerge as widely used in on- and off-highway electric vehicles: lithium ferrophosphate, or lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide (NMC), and lithium nickel cobalt aluminum oxide (NCA).
All batteries degrade with usage, decreasing their Ah capacity with each charge/discharge cycle. In material handling, batteries usually become unusable when they drop below 80% of their nominal capacity.
A battery’s longevity, or its cycle life, depends on three main factors:
The graph below shows the results of recent independent degradation tests of the three types of cells with different chemistry, under equal conditions of temperature and depth of discharge.
One “equivalent full cycle” is the sum of charge/discharge events that add up to one full (zero to 100%) charge and one full (to zero) discharge of a battery.
LFP lithium batteries exhibit superior performance compared to NMC—they offer a longer lifespan and are generally less expensive.
“The LFP cells exhibit substantially longer cycle life spans under the examined conditions.”
Lithium nickel cobalt aluminum oxide (NCA) batteries performed similarly to or worse than NMC.
The tests were performed at Sandia National Laboratories as “part of a broader effort to determine and characterize the safety and reliability of commercial Li-ion cells.”
Apart from longer cycle life, LFP wins on safety, with better stability and a higher thermal run-away temperature threshold (roughly 420°F for NMC and 520°F for LFP).
NMC chemistry is higher on specific energy, which means NMC cells have higher energy density than LFP. This is important for electronics and electric vehicles, where battery weight is a decisive factor (the lighter the better). On the other hand, industrial batteries for material handling applications are often engineered as a counter-weight (the heavier the better).
Battery cells are mainly defined by the following:
Here are the three types in detail.
LFP is a popular, cost-effective cathode material for lithium-ion cells that are known to deliver excellent safety and long life span, which makes it particularly well-suited for specialty battery applications requiring high load currents and endurance.
An LFP cathode offers several key advantages, including a high current rating, long cycle life, and superior thermal stability, which makes it one of the safest and most abuse-tolerant cathode material options. LFP delivers a lower nominal voltage, which results in lower specific energy than other cathode materials. LFP batteries tend to have a somewhat higher self-discharge than other Li-ion battery types.
One of the most widely used Li-ion cathodes is obtained by combining nickel, manganese, and cobalt. Lithium nickel manganese cobalt oxide (LiNiMnCoO2), or NMC, has become the go-to cathode material to develop batteries for power tools, e-bikes, and other electric powertrains. It delivers strong overall performance, high specific energy, and a low self-heating rate. This cathode power is used for EV batteries (Tesla? Yes, they are currently using both NMC and NCA, but recently started to switch to LFP).
The NMC formula typically consists of 33% nickel, 33% manganese, and 33% cobalt. This blend, sometimes referred to as 1-1-1, is a popular option for mass-produced cells in applications requiring frequent cycling (automotive, electronics) due to the reduced material cost with a lower cobalt content.
A lithium nickel cobalt aluminum oxide, or NCA, battery shares similarities with the NMC by offering high specific energy, reasonably good specific power, and a relatively long life span, making NCA a candidate for EV powertrains. The main downsides are safety and cost, as well as the recent supply chain issues.
As lithium-ion batteries continue to grow in popularity, lead-acid battery manufacturers are now offering thin plate pure lead batteries…
Recent independent degradation tests of commercial lithium batteries reveal a big surprise! Contrary to the claims of many NMC-based lithium…
If you’re reading this, you’re likely considering switching your fleet of forklifts and hand jacks to Lithium-Ion batteries. Or you might be…
Lithium-ion is named for its active materials; the words are either written in full or shortened by their chemical symbols. A series of…